
Process Synchronisation

Background (1)

 Concurrent access to shared data may

result in data inconsistency

 Maintaining data consistency requires

mechanisms to ensure the orderly

execution of cooperating processes

Producer Consumer

Background (2)
 Race condition

 count++ could be implemented as
register1 = count
register1 = register1 + 1
count = register1

 count- - could be implemented as
register2 = count
register2 = register2 - 1
count = register2

 Consider this execution interleaving with ―count = 5‖ initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

 Solution: ensure that only one process at a time can manipulate variable
count

 Avoid interference between changes

Critical Section Problem

 Critical section: a segment of code
in which a process may be changing
common variables
◦ Only one process is allowed to be

executing in its critical section at any
moment in time

 Critical section problem: design a
protocol for process cooperation

 Requirements for a solution
◦ Mutual exclusion
◦ Progress
◦ Bounded waiting

 No assumption can be made about
the relative speed of processes

 Handling critical sections in OS
◦ Pre-emptive kernels (real-time

programming, more responsive)
 Linux from 2.6, Solaris, IRIX

◦ Non-pre-emptive kernels (free from
race conditions)
 Windows XP, Windows 2000,

traditional UNIX kernel, Linux
prior 2.6

Process structure

Peterson’s Solution

 Two process solution

◦ Mutual exclusion is

preserved?

◦ The progress

requirements is satisfied?

◦ The bounded-waiting

requirement is met?

 Assumption: LOAD and

STORE instructions are

atomic, i.e. cannot be

interrupted

Process Pi

Synchronisation Hardware (1)

 Simple solution: use a lock

 Prevent interrupts from
occurring while a shared
variable is being modified
◦ Non-pre-emptive kernels

 Atomic instructions
◦ Test and modify a word

◦ Swap the contents of two
words

Synchronisation Hardware (2)

Semaphores (1)

 An integer variable only access through two atomic
operations

 Counting semaphore: integer value ranges over an
unrestricted domain

 Binary semaphore (mutex lock): integer value ranges
between 0 and 1

Semaphores (2)

Semaphores (3)

 Implementation

◦ Main disadvantage: busy waiting

 Spinlock – in multiprocessor systems no context

switch required

◦ Block and wakeup

Link field in each PCB

FIFO queue – do not rely on this!

Semaphores (4)

 Must guarantee that no two processes can execute
acquire() and release() on the same semaphore
at the same time

 Implementation becomes the critical section problem
where the wait and signal code are placed in the critical
section

◦ Could now have busy waiting in critical section implementation

 But implementation code is short

 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical
sections and therefore this is not a good solution

Semaphores (5)
 Deadlock: two or more processes are waiting indefinitely for an event that

can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

S.acquire(); Q.acquire();

Q.acquire(); S.acquire();

. .

. .

. .

S.release(); Q.release();

Q.release(); S.release();

 Starvation: indefinite blocking

◦ A process may never be removed from the semaphore queue in which it is
suspended

◦ LIFO queue

Classic Problems of Synchronisation (1)

Bounded-Buffer Problem

Classic Problems of Synchronisation (2)

Classic Problems of Synchronisation (3)

Readers-Writers Problem

Classic Problems of Synchronisation (4)

Classic Problems of Synchronisation (5)

 Dinning-Philosophers Problem

◦ Semaphore chopStick [5] initialized to 1

◦ Deadlock!
 Allow up to 4 philosophers to sit at the table

 Only allow them to pick a chopstick if both are available (within a critical
section)

 Asymmetry

◦ Starvation

Monitors (1)

 Semaphore problems

◦ Misbehaving processes

 mutex.release(); … critical section …

mutex.acquire();

 mutex.acquire(); … critical section …

mutex.acquire();

 … critical section … mutex.release();

 mutex.acquire (); … critical section …

◦ Solution: introduce high-level language

constructs - monitor

Monitors (2)

 Only one process may be active within the
monitor at a time

Monitors (3)

 Condition x, y;

 Two operations on a condition variable:

◦ x.wait () – a process that invokes the operation is suspended.

◦ x.signal () – resumes one of processes (if any) that invoked x.wait ()

 Signal and wait or signal and continue

◦ Signal and immediately exit!

Monitors (4)

dp.takeForks(i);

eat();

dp.returnForks(i);

Java Synchronisation (1)
 Thread safe application ensures that data remain consistent even when accessed

concurrently by multiple threads

 Java provides synchronization at the language-level

 Each Java object has an associated lock

 This lock is acquired by invoking a synchronized method

 This lock is released when exiting the synchronized method

 Threads waiting to acquire the object lock are placed in the entry set for the
object lock

 The JVM arbitrarily selects a thread from the entry set to be the next owner of the
lock

Java Synchronisation (2)

 Bounded buffer

 Problem: race condition on
count

 Solution: synchronised
methods
◦ Remove busy waiting with

yield()
 Livelock: continuously attempt

 an action that fails

◦ What if the buffer is full?
 Deadlock!!

insert()

remove()

Java Synchronisation (3)

 wait() and notify()
◦ Every Java object has an associated wait set for threads

◦ Wait: (1) release lock, (2) change thread state to blocked, (3)
place thread in object’s wait set

◦ Notify: (1) pick arbitrary thread from wait set, (2) move
picked thread from wait set to entry set, (3) change picked
thread state to runnable

Java Synchronisation (4)

Java Synchronisation (5)

 notifyAll(): selects all threads in the wait set and

moves them to the entry set

Java Synchronisation (6)

Readers-Writers

Java Synchronisation (7)

 Synchronisation rules

◦ Locks are reentrant (recursive)

◦ A thread can simultaneously
own the lock for multiple
objects
 Nesting of synchronised

invocations

◦ Non synchronised methods can
be invoked regardless of lock
ownership

◦ Calls to notify() and
notifyAll() when the wait
set is empty have no effect

◦ wait(), notify() and
notifyAll() may only be
invoked from synchronised
methods or blocks
 IllegalMonitorStateEx
ception is thrown otherwise

Block Synchronisation

Java Synchronisation (8)

 Handling InterruptedException

◦ wait() checks interruption status

◦ The exception clears the interruption status

◦ Handle or propagate

 Should a thread blocked in a wait set be

interrupted?

Concurrency Features in Java (1)

 Java.util.concurr
ent and
java.util.concurr
ent.locks

 Reentrant locks
◦ Similar to
synchronized but
with fairness feature

 Semaphores

 Condition variables
◦ Similar to wait, notify

and notifyAll

◦ Must be associated with a
lock

Lock key = new ReentrantLock();

key.lock();

try {

//critical section

//…

} finally {

key.unlock();

}

Semaphore sem = new Semaphore(1);

try {

sem.acquire();

//critical section

// …

} catch (InterruptedException ie) {

} finally {

sem.realease();

}

Concurrency Features in Java (2)

For contemplation (1)

 What is the meaning of the term busy waiting? What other
kinds of waiting are there in an operating system? Can busy
waiting be avoided altogether? Explain your answer.

 Explain why implementing synchronization primitives by
disabling interrupts is not appropriate in a single-processor
system if the synchronization primitives are to be used in
user-level programs.

 Explain why interrupts are not appropriate for implementing
synchronization primitives in multiprocessor systems.

 Demonstrate that monitors and semaphores are equivalent
insofar as they can be used to implement the same types of
synchronization problems.

 Discuss the tradeoff between fairness and throughput of
operations in the readers-writers problem. Propose a
method for solving the readers/writers problem without
causing starvation.

For contemplation (2)
 Under which circumstances can a semaphore be used to solve the

critical section problem. Clearly demonstrate that in these
circumstances the semaphore solution satisfies the conditions for a
solution to the critical section problem. Provide code that shows how
the semaphore is used to protect the critical section.

 How does the signal() operation associated with monitors differ from
the corresponding operation defined for semaphores?

 Show that, if the acquire() and release() semaphore operations are not
executed atomically, then mutual exclusion may be violated.

 The wait() statement in all Java program examples in this chapter is
part of a while loop. Explain why you would always need to use a while
statement when using wait() and why you would never use an if
statement.

 Suppose we replace the wait() and signal() operations of monitors with
a single construct await(B), where B is a general Boolean expression
that causes the process executing it to wait until B becomes true.
◦ Write a monitor using this scheme to implement the readers–writers

problem.
◦ Explain why, in general, this construct cannot be implemented efficiently.
◦ What restrictions need to be put on the await statement so that it can be

implemented efficiently? (Hint: Restrict the generality of B; see Kessels
[1977].)

For contemplation (3)

 The first known correct
software solution to the
critical-section problem for
two processes was developed
by Dekker. The two
processes, P0 and P1, share
the following variables:

boolean flag[2]; /* initially false */

int turn;

 The structure of process Pi (i
== 0 or 1) is shown in the
figure; the other process is Pj
(j == 1 or 0). Prove that the
algorithm satisfies all three
requirements for the critical-
section problem.

For contemplation (4)

 The first known correct software
solution to the critical-section
problem for n processes with a
lower bound on waiting of n − 1
turns was presented by
Eisenberg andMcGuire. The
processes share the following
variables:

enum pstate {idle, want in, in cs};

pstate flag[n];

int turn;

 All the elements of flag are
initially idle; the initial value of
turn is immaterial (between 0
and n-1). The structure of
process Pi is shown in the figure.
Prove that the algorithm satisfies
all three requirements for the
critical-section problem.

For contemplation (5)

 The Singleton design pattern ensures that only
one instance of an object is created. For example,
assume we have a class called Singleton and we
only wish to allow one instance of it. Rather than
creating a Singleton object using its constructor,
we instead declare the constructor as private and
provide a public static method—such as
getInstance() —for object creation:

Singleton sole = Singleton.getInstance();

 The figure provides one strategy for implementing
the Singleton pattern. The idea behind this
approach is to use lazy initialization, whereby
we create an instance of the object onlywhen it is
needed—that is, when getInstance() is first called.
However, the figure suffers from a race condition.
Identify the race condition.

 The following figure shows an alternative strategy
that addresses the race condition by using the
double-checked locking idiom. Using this
strategy, we first check whether instance is null. If
it is, we next obtain the lock for the Singleton
class and then double-check whether instance is
still null before creating the object. Does this
strategy result in any race conditions? If so,
identify and fix them. Otherwise, illustrate why
this code example is thread safe.

For contemplation (6)
 Assume that a finite number of resources of a single resource type must be managed. Processes may

ask for a number of these resources and—once finished—will return them. As an example, many
commercial software packages provide a given number of licenses, indicating the number of applications
that may run concurrently. When the application is started, the license count is decremented. When the
application is terminated, the license count is incremented. If all licenses are in use, requests to start the
application are denied. Such requests will only be granted when an existing license holder terminates
the application and a license is returned. The following program segment is used to manage a finite
number of instances of an available resource. The maximum number of resources and the number of
available resources are declared as follows:
◦ #define MAX RESOURCES 5

◦ int available resources = MAX RESOURCES;

 When a process wishes to obtain a number of resources, it invokes the decrease count() function:
◦ /* decrease available resources by count resources */

◦ /* return 0 if sufficient resources available, */

◦ /* otherwise return -1 */

◦ int decrease count(int count) {

◦ if (available resources < count) return -1;

◦ else { available resources -= count; return 0; }

◦ }

 When a process wants to return a number of resources, it calls the decrease count() function:
◦ /* increase available resources by count */

◦ int increase count(int count) {

◦ available resources += count; return 0;

◦ }

 The preceding program segment produces a race condition. Do the following:
◦ Identify the data involved in the race condition.

◦ Identify the location (or locations) in the code where the race condition occurs.

◦ Using Java synchronization, fix the race condition. Also modify decreaseCount() so that a thread blocks if there aren’t sufficient
resources available.

