
Process Synchronisation



Background (1)

 Concurrent access to shared data may 

result in data inconsistency

 Maintaining data consistency requires 

mechanisms to ensure the orderly 

execution of cooperating processes

Producer Consumer



Background (2)
 Race condition

 count++ could be implemented as
register1 = count
register1 = register1 + 1
count = register1

 count- - could be implemented as
register2 = count
register2 = register2 - 1
count = register2

 Consider this execution interleaving with ―count = 5‖ initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = count {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute count = register1 {count = 6 } 
S5: consumer execute count = register2 {count = 4}

 Solution: ensure that only one process at a time can manipulate variable 
count

 Avoid interference between changes



Critical Section Problem

 Critical section: a segment of code 
in which a process may be changing 
common variables
◦ Only one process is allowed to be 

executing in its critical section at any 
moment in time

 Critical section problem: design a 
protocol for process cooperation

 Requirements for a solution
◦ Mutual exclusion
◦ Progress
◦ Bounded waiting

 No assumption can be made about 
the relative speed of processes

 Handling critical sections in OS
◦ Pre-emptive kernels (real-time 

programming, more responsive)
 Linux from 2.6, Solaris, IRIX

◦ Non-pre-emptive kernels (free from 
race conditions)
 Windows XP, Windows 2000, 

traditional UNIX kernel, Linux 
prior 2.6

Process structure



Peterson’s Solution

 Two process solution

◦ Mutual exclusion is 

preserved?

◦ The progress 

requirements is satisfied?

◦ The bounded-waiting 

requirement is met?

 Assumption: LOAD and 

STORE instructions are 

atomic, i.e. cannot be 

interrupted

Process Pi



Synchronisation Hardware (1)

 Simple solution: use a lock

 Prevent interrupts from 
occurring while a shared 
variable is being modified
◦ Non-pre-emptive kernels

 Atomic instructions
◦ Test and modify a word

◦ Swap the contents of two 
words



Synchronisation Hardware (2)



Semaphores (1)

 An integer variable only access through two atomic 
operations

 Counting semaphore: integer value ranges over an 
unrestricted domain 

 Binary semaphore (mutex lock): integer value ranges 
between 0 and 1



Semaphores (2)



Semaphores (3)

 Implementation

◦ Main disadvantage: busy waiting

 Spinlock – in multiprocessor systems no context 

switch required

◦ Block and wakeup

Link field in each PCB

FIFO queue – do not rely on this!



Semaphores (4)

 Must guarantee that no two processes can execute 
acquire() and release() on the same semaphore 
at the same time

 Implementation becomes the critical section problem 
where the wait and signal code are placed in the critical 
section

◦ Could now have busy waiting in critical section implementation

 But implementation code is short

 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical 
sections and therefore this is not a good solution



Semaphores (5)
 Deadlock: two or more processes are waiting indefinitely for an event that 

can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

S.acquire(); Q.acquire();

Q.acquire(); S.acquire();

. .

. .

. .

S.release();                       Q.release();

Q.release();                       S.release();

 Starvation: indefinite blocking

◦ A process may never be removed from the semaphore queue in which it is 
suspended 

◦ LIFO queue



Classic Problems of Synchronisation (1)

Bounded-Buffer Problem



Classic Problems of Synchronisation (2)



Classic Problems of Synchronisation (3)

Readers-Writers Problem



Classic Problems of Synchronisation (4)



Classic Problems of Synchronisation (5)

 Dinning-Philosophers Problem

◦ Semaphore chopStick [5] initialized to 1

◦ Deadlock!
 Allow up to 4 philosophers to sit at the table

 Only allow them to pick a chopstick if both are available (within a critical 
section)

 Asymmetry

◦ Starvation



Monitors (1)

 Semaphore problems

◦ Misbehaving processes

 mutex.release(); … critical section … 

mutex.acquire();

 mutex.acquire(); … critical section … 

mutex.acquire();

 … critical section … mutex.release();

 mutex.acquire (); … critical section …

◦ Solution: introduce high-level language 

constructs - monitor



Monitors (2)

 Only one process may be active within the 
monitor at a time



Monitors (3)

 Condition x, y;

 Two operations on a condition variable:

◦ x.wait () – a process that invokes the operation is  suspended.

◦ x.signal () – resumes one of processes (if any) that invoked x.wait ()

 Signal and wait or signal and continue

◦ Signal and immediately exit!



Monitors (4)

dp.takeForks(i);

eat();

dp.returnForks(i);



Java Synchronisation (1)
 Thread safe application ensures that data remain consistent even when accessed 

concurrently by multiple threads

 Java provides synchronization at the language-level

 Each Java object has an associated lock

 This lock is acquired by invoking a synchronized method

 This lock is released when exiting the synchronized method

 Threads waiting to acquire the object lock are placed in the entry set for the 
object lock

 The JVM arbitrarily selects a thread from the entry set to be the next owner of the 
lock



Java Synchronisation (2)

 Bounded buffer

 Problem: race condition on 
count

 Solution: synchronised 
methods
◦ Remove busy waiting with 

yield()
 Livelock: continuously attempt 

 an action that fails

◦ What if the buffer is full?
 Deadlock!!

insert()

remove()



Java Synchronisation (3)

 wait() and notify()
◦ Every Java object has an associated wait set for threads

◦ Wait: (1) release lock, (2) change thread state to blocked, (3) 
place thread in object’s wait set

◦ Notify: (1) pick arbitrary thread from wait set, (2) move 
picked thread from wait set to entry set, (3) change picked 
thread state to runnable



Java Synchronisation (4)



Java Synchronisation (5)

 notifyAll(): selects all threads in the wait set and 

moves them to the entry set



Java Synchronisation (6)

Readers-Writers



Java Synchronisation (7)

 Synchronisation rules

◦ Locks are reentrant (recursive)

◦ A thread can simultaneously 
own the lock for multiple 
objects
 Nesting of synchronised 

invocations

◦ Non synchronised methods can 
be invoked regardless of lock 
ownership

◦ Calls to notify() and 
notifyAll() when the wait 
set is empty have no effect

◦ wait(), notify() and 
notifyAll() may only be 
invoked from synchronised 
methods or blocks
 IllegalMonitorStateEx
ception is thrown otherwise

Block Synchronisation



Java Synchronisation (8)

 Handling InterruptedException

◦ wait() checks interruption status

◦ The exception clears the interruption status

◦ Handle or propagate

 Should a thread blocked in a wait set be 

interrupted?



Concurrency Features in Java (1)

 Java.util.concurr
ent and 
java.util.concurr
ent.locks

 Reentrant locks
◦ Similar to 
synchronized but 
with fairness feature

 Semaphores

 Condition variables
◦ Similar to wait, notify

and notifyAll

◦ Must be associated with a 
lock

Lock key = new ReentrantLock();

key.lock();

try {

//critical section

//…

} finally {

key.unlock();

}

Semaphore sem = new Semaphore(1);

try {

sem.acquire();

//critical section

// …

} catch (InterruptedException ie) {

} finally {

sem.realease();

}



Concurrency Features in Java (2)



For contemplation (1)

 What is the meaning of the term busy waiting? What other 
kinds of waiting are there in an operating system? Can busy 
waiting be avoided altogether? Explain your answer.

 Explain why implementing synchronization primitives by 
disabling interrupts is not appropriate in a single-processor 
system if the synchronization primitives are to be used in 
user-level programs.

 Explain why interrupts are not appropriate for implementing 
synchronization primitives in multiprocessor systems.

 Demonstrate that monitors and semaphores are equivalent 
insofar as they can be used to implement the same types of 
synchronization problems.

 Discuss the tradeoff between fairness and throughput of 
operations in the readers-writers problem. Propose a 
method for solving the readers/writers problem without 
causing starvation. 



For contemplation (2)
 Under which circumstances can a semaphore be used to solve the 

critical section problem. Clearly demonstrate that in these 
circumstances the semaphore solution satisfies the conditions for a 
solution to the critical section problem. Provide code that shows how 
the semaphore is used to protect the critical section. 

 How does the signal() operation associated with monitors differ from 
the corresponding operation defined for semaphores?

 Show that, if the acquire() and release() semaphore operations are not 
executed atomically, then mutual exclusion may be violated.

 The wait() statement in all Java program examples in this chapter is 
part of a while loop. Explain why you would always need to use a while 
statement when using wait() and why you would never use an if 
statement.

 Suppose we replace the wait() and signal() operations of monitors with 
a single construct await(B), where B is a general Boolean expression 
that causes the process executing it to wait until B becomes true.
◦ Write a monitor using this scheme to implement the readers–writers 

problem.
◦ Explain why, in general, this construct cannot be implemented efficiently.
◦ What restrictions need to be put on the await statement so that it can be 

implemented efficiently? (Hint: Restrict the generality of B; see Kessels
[1977].)



For contemplation (3)

 The first known correct 
software solution to the 
critical-section problem for 
two processes was developed 
by Dekker. The two 
processes, P0 and P1, share 
the following variables:

boolean flag[2]; /* initially false */

int turn;

 The structure of process Pi (i 
== 0 or 1) is shown in the 
figure; the other process is Pj 
(j == 1 or 0). Prove that the 
algorithm satisfies all three 
requirements for the critical-
section problem.



For contemplation (4)

 The first known correct software 
solution to the critical-section 
problem for n processes with a 
lower bound on waiting of n − 1 
turns was presented by 
Eisenberg andMcGuire. The 
processes share the following 
variables:

enum pstate {idle, want in, in cs};

pstate flag[n];

int turn;

 All the elements of flag are 
initially idle; the initial value of 
turn is immaterial (between 0 
and n-1). The structure of 
process Pi is shown in the figure. 
Prove that the algorithm satisfies 
all three requirements for the 
critical-section problem.



For contemplation (5)

 The Singleton design pattern ensures that only 
one instance of an object is created. For example, 
assume we have a class called Singleton and we 
only wish to allow one instance of it. Rather than 
creating a Singleton object using its constructor, 
we instead declare the constructor as private and 
provide a public static method—such as 
getInstance() —for object creation:

Singleton sole = Singleton.getInstance();

 The figure provides one strategy for implementing 
the Singleton pattern. The idea behind this 
approach is to use lazy initialization, whereby 
we create an instance of the object onlywhen it is 
needed—that is, when getInstance() is first called. 
However, the figure suffers from a race condition. 
Identify the race condition.

 The following figure shows an alternative strategy 
that addresses the race condition by using the 
double-checked locking idiom. Using this 
strategy, we first check whether instance is null. If 
it is, we next obtain the lock for the Singleton 
class and then double-check whether instance is 
still null before creating the object. Does this 
strategy result in any race conditions? If so, 
identify and fix them. Otherwise, illustrate why 
this code example is thread safe.



For contemplation (6)
 Assume that a finite number of resources of a single resource type must be managed. Processes may 

ask for a number of these resources and—once finished—will return them. As an example, many 
commercial software packages provide a given number of licenses, indicating the number of applications 
that may run concurrently. When the application is started, the license count is decremented. When the 
application is terminated, the license count is incremented. If all licenses are in use, requests to start the 
application are denied. Such requests will only be granted when an existing license holder terminates 
the application and a license is returned. The following program segment is used to manage a finite 
number of instances of an available resource. The maximum number of resources and the number of 
available resources are declared as follows:
◦ #define MAX RESOURCES 5

◦ int available resources = MAX RESOURCES;

 When a process wishes to obtain a number of resources, it invokes the decrease count() function:
◦ /* decrease available resources by count resources */

◦ /* return 0 if sufficient resources available, */

◦ /* otherwise return -1 */

◦ int decrease count(int count) { 

◦ if (available resources < count) return -1;

◦ else { available resources -= count; return 0; }

◦ }

 When a process wants to return a number of resources, it calls the decrease count() function:
◦ /* increase available resources by count */

◦ int increase count(int count) { 

◦ available resources += count; return 0;

◦ }

 The preceding program segment produces a race condition. Do the following:
◦ Identify the data involved in the race condition.

◦ Identify the location (or locations) in the code where the race condition occurs.

◦ Using Java synchronization, fix the race condition. Also modify decreaseCount() so that a thread blocks if there aren’t sufficient 
resources available.


